
Preprint
UCRL-JC-148058

US. Department of Energy

Laboratory

Scalable Analysis
Techniques for
Microprocessor
Performance Counter
Metrics

D.H. Ahn, J.S. Veffer

This article was submitted to
SC2002: High Performance Networking and Computing, Baltimore,
Maryland, November 16-22,2002

July 24,2002

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at bttp: / /www.doe.zov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@ado nis.osti.pov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: prders@ntis .fedworld.vov
Online ordering:

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

http://www.llnl.gov

Scalable Analysis Techniques for Microprocessor
Performance Counter Metrics

Dong H. Ahn Jeffrey S. Vetter

Lawrence Livermore National Laboratory
Livermore, CA, USA 94551

(vetter3,ahnl}@llnl.gov

1 Introduction
Contemporary microprocessors provide a rich set of integrated performance counters

that allow application developers and system architects alike the opportunity to gather
important information about workload behaviors. These counters can capture instruction,
memory, and operating system behaviors. Current techniques for analyzing data produced
from these counters use raw counts, ratios, and visualization techniques to help users
make decisions about their application source code.

While these techniques are appropriate for analyzing data from one process, they do
not scale easily to new levels demanded by contemporary computing systems. Indeed, the
amount of data generated by these experiments is on the order of tens of thousands of
data points. Furthermore, if users execute multiple experiments, then we add yet another
dimension to this already hotty picture. This flood of multidimensional data can swamp
efforts to harvest important ideas from these valuable counters.

Very simply, this paper addresses these concerns by evaluating several multivariate
statistical techniques on these datasets. We find that several techniques, such as statistical
clustering, can automatically extract important features from this data. These derived
results can, in turn, be feed directly back to an application developer, or used as input to a
more comprehensive performance analysis environment, such as a visualization or an
expert system.

2 Microprocessor Hardware Performance Counters
Modern microprocessors include integrated hardware support for non-intrusive

monitoring of a variety of processors and memory system events, commonly referred to
as hardware counters [3, 91; this capability is very useful to both computer architects [2]
and applications developers [lS]. These counters fill a gap that lies between detailed
microprocessor simulation and software instrumentation. Software instrumentation can
introduce perturbation into an application and the measurement process itself. On the
other hand, these counters have relatively low perturbation and can provide insightful
information about processor and memory-system behavior. Even though this information
is statistical in nature, it does provide a window into certain behaviors that are
realistically impossible to gather otherwise. For instance, on IBM's Power3
microprocessor, these events include various categories of instructions, cache misses,
branch predictions, memory coherence operations, and functional unit utilization.

Several tools and microprocessors have added additional functionality to simple
event counting. Intel's Itanium processors [6] have features that allow monitoring based

7/24/2002 10 : 5 8 : 00 AM

mailto:vetter3,ahnl}@llnl.gov

on an instruction address range, a specific instruction opcode, a data address range,
and/or the privilege level. In addition, the Itanium supplies event address registers that
record the instruction and data addresses of data cache misses for loads, the instruction
and data addresses of data TLB misses, and the instruction addresses of instruction TLB
and cache misses.

DEC/Compaq implemented another useful strategy for hardware counters: instruction
sampling within the microprocessor. Using this approach, a performance-monitoring tool,
such as ProfileMe [4] or DCPI [l], could arbitrarily choose to measure performance
characteristics as they flowed through the processor pipeline. The tool could, then, gather
this information over the execution of an application and attribute performance problems
to certain instructions.

call f-start-section(l,O, ierr)
call hydxy(ddd, dddl, ithread)
call deltat (*I Finished X sweep" ,2)
call f-end-section(rank, l,O,ierr)
BARRIER
call flag-clear
BARRIER
call f-start-section(2,0,ierr)
call hydyz(dddl, ddd, ithread)
call deltat (' 1 Finished Y sweep", 2)
call f-end-section(rank, 2,0,ierr)
BARRIER
call flaq clear

Figure 1: Sample code segment from function runhyd3 of sPPM.

2.1 Counting Hardware Events
Our approach to using hardware counters rests on bracketing targeted code regions

yvith directives that program the counters to capture events of interest, start and stop the
counters, and store the counter values. Users can insert these directives several ways:
manually or by using a compiler, a binary editor, or dynamic instrumentation. Hardware
counters do require the appropriate operating system and library support to attribute
counts appropriately to the proper processes and threads.

1 2 2 0135138668 7593760051 2207456335 9172755 73699055 3590374684 2060311042 1230463969

2 1 2 8291791110 7421240463 2334628952 8509892 72074918 3540521698 2060023498 1230670879
2 2 1 8405106757 7645055609 2415396992 14655896 72705214 3708799229 2104739001 1240530500
2 2 2 8381061956 7523753702 2377276020 8606055 72608329 3553200776 2084495857 1256915516

2 1 1 am29304 7 5 ~ 1 ~ 2401195595 1 4 ~ x 9 72302972 37173zmm 207~53081 1233604083

Table 1: Counter values from code segment.

Figure 1 shows a code segment fi-om sPPM [1 13 that has been instrumented with high
level library routines written on top of MPX [lo] and PAP1 [3] in order to capture eight
hardware counter values: total processor cycles, total instructions, cycles stalled waiting

- 2 -

for memory accesses, floating point divide instructions, L1 cache misses, floating point
instructions, load instructions, and store instructions.

As Figure 1 illustrates, every execution of this sequential code segment will generate
one instance of counter values for each MPI task. Therefore, applications that execute
this code segment millions of times will generate millions of instances of counter values.
Table 1 shows the raw counter value table that is generated fiom the code segment in
Figure 1, using two MPI tasks. The G column lists the instrumentation identifiers that
represent different regions of the code. The S column lists instances of these regions.
Clearly, in real experiments, this data management problem can become intractable!

3 Multivariate Statistical Techniques for Performance Data
As we illustrated in Section 2, each instrumentation point for an application can

generate a vast number of hardware counter values. Multiple experiments can aggravate
this issue even further. To analyze this data, we turn to multivariate statistical techniques
to help focus the user's attention on the important metrics and the distribution of those
metrics.

3.1 Performance Metric Spaces
For further analysis, we model these values as points in a multidimensional space. To

make this notion more formal, consider a set of k dynamic performance metrics,
hardware counters in our case, measured on a set of P parallel tasks, on a set of g
instrumentation regions, and on s samples. Abstractly, one can then view these events as
defining a collection of these points that describe parallel system characteristics.
Following [14], if Ri denotes the range of metric k, we call the Cartesian product

.

M = R1-x R2 x ... x Rk

a performance metric space. Thus, the ordered k-tuples

(Vi E R1; V2 E R2; ... ; Vk E R$ (1)
are points in M. It is important to note that this definition of the metric space does not
include the dimensions of instrumentation identifier, parallel task identifier, or
measurement instance. Furthermore, this model assumes that this higherdimension data
can be down-sampled into this space as appropriate. For instance, we collect all the points
for one instrumentation region across all tasks and across all measurements and then
project it into this metric space. This situation would generate k x P x s points. While this
trivial example illustrates our formalization, we expect to use our techniques on much
larger systems where k > 10, g > 10, P >> 10, and s >> 10.

The goal of our analysis techniques is now clear; we must reduce this massive
number of measurement points and the dimensionality of the metric space to a
comprehendible scale. Traditional multivariate statistical techniques warrant investigation
as vehicles for understanding this data. In fact, projection pursuit [14] and clustering [12]
have been applied to understanding real-time performance data; this previous work
strongly suggests that such techniques will be useful for managing hardware counter data.
These multivariate statistical techniques allow users to draw inferences fkom observations
with multiple variables (dimensions) and they include dimension reduction and
classification.

- 3 -

,

3.2 Data Preparation
Raw data as generated by reading the hardware counters directly can provide useful

information; however, in the context of performance analysis, derived metrics are
important. For example, the raw metric for number of cycles supplies a useful estimate of
how long a code region executed; however, the derived metric of number of instructions
divided by the number of cycles (IPC or instructions per cycle) can directly emphasize
code regions that are performing poorly. On the other hand, raw metrics are necessary to
help gauge the overall importance of code regions per se. For instance, the IPC of a code
region that accounts for only minuscule numbers of cycles during the application
execution is irrelevant.

3.3 Clustering
Clustering is a rudimentary, exploratory technique that is helpful in understanding the

complex nature of multivariate relationships [7]. It provides a familiar means for
assessing dimensionality, detecting outliers, and suggesting attractive hypotheses about
relationships between the data. Cluster analysis makes no assumptions about the number
of clusters or the cluster structure. It relies only on a metric that calculates the similarities
or distances between data points. There have been a wide variety of clustering algorithms
proposed. Major differences are whether particular methods simply partition data points
into a given number of groups or build more complicated cluster (or data point)
hierarchies.

In the context of hardware counter data, we propose both hierarchical and non-
hierarchical methods will help users identify equivalence classes of data points and an
‘important’ subset of entire performance metrics that make more contribution to the
existence of those classes.

We demonstrate how hierarchical algorithms give users insights about overall cluster
structure of a data set by means of dendrogram, while nohierarchical methods, such as
the k-means algorithm, provide an efficient method to explain the importance of each
metric on a cluster configuration by using F-ratio of each metric (Section 4.4). F-ratio is a
technique for univariate analysis of variance that is defined as Between-ClusferVariabli@.

Hence, metrics that vary greatly among different clusters and remain the same in the
same cluster yields higher F-ratio.

K-means and F-ratio can also be employed when the decision on number of clusters
is not obvious. This situation happens often when users do not have reasonable prior
knowledge about target application’s behavior. K-mean and F-ratio methods provide a
means by which a system can automatically partition data points into a number of clusters
as to maximize the between-cluster variability relative to the within-cluster variability.

Within - ClusterVariablity

3.4 Factor Analysis
Factor analysis is a multivariate technique that makes it possible to describe the

covariance relationships among many variables in terms of a few underlying quantity,
factors. In the context of hardware counter space, we propose it will reduce the
dimensionality of our performance metric space, M = [A1 x R2 x ... x Rk 3, by assembling
highly correlated metrics in a peer group while separating uncorrelated ones into the
other groups. (e.g. [R, , R, , R, 1, x[R,]x.. .x [Ri Rj R, I). This grouping can guide users
to choose a right set of metrics for refining their code optimization efforts.

- 4 -

In the factor analysis model, our metrics space M can be rewritten as

R, -vl =I& +l12F2 +...+ll,Fm+~l
R, -0, = I 2 & +lZ2F2 +...+ l,,,,Fm+~,

R, - v, = lplF, + 1,,F2 + . . . + l,,Fm + E,

Where I;I: is i'*common factor, Ri jfhmetrics, v, mean of Ri, and coefficient lji is

the loading of Ri on the factor 4.. As this notation suggests, grouping R s that have
higher loadings for a particular F will yield a group whose R's are highly correlated.

3.5 Principal Component Analysis
define.

4 Evaluation
We empirically evaluated our techniques on an operational prototype with two

applications. We scale each application up to 128 tasks. As Figure 1 illustrates, we first
instrument the application and collect hardware counter data on the target platform. We
then clean, merge, and prepare this data for statistical analysis. Next, we apply several
statistical techniques to the prepared data. In the future, we expect to feed the results from
these analyses into a comprehensive performance analysis environment or automated
performance tool.

4.1 Instrumentation and Data Collection
We manually instrument our target applications with source code annotations. Each

instrumentation point identifies a code region to capture hardware counter metrics as
Figure 1 illustrates. Hence, each application has g instrumented code regions as defined
in Section 3.1. For these experiments, we assume that each region captures the same set
of k hardware metrics.

In this framework, our tool can either write the each sample for each region to a
tracefile during execution or accumulate the samples for each region and write the
accumulated metrics to a file at termination. In the former context, tracefiles would grow
at a rate proportional to k x g x s for each parallel task. We implemented both modes, but
still, we use the latter technique, which generates only k x g measurement points for each
parallel task, here to prevent an explosion of data and measurement overhead in the
application. Our statistical techniques remain valid for accumulated data; however, this
selection has the drawback that accumulated measurements can hide certain performance
phenomena.

At termination of the application experiment, each parallel task P generates a local
file. Our prototype merges these P local files into one global file, containing all
accumulated measurements for an application, and having size proportional to k x g x P.
With all these raw metrics for one application now in one file, we can easily apply our
statistical techniques to this file with a filter. This filter also manipulates the raw metrics
for data cleaning and generating useful derived metrics as described in Section 3.2.

- 5 -

4.2 Platform
We ran our tests on an IBM SP system, located at Lawrence Livermore National

Laboratory. This machine is composed of sixteen 222 MHZ IBM Power3 8-way S M P
nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point
units, and two loadstore units. Its 64 KB L1 cache is 128 way associative with 32 byte
cache lines and L1 uses a round-robin replacement scheme. The L2 cache is 8 MB in
size, which is four-way set associative with its own private cache bus. At the time of our
tests, the batch partition had 15 nodes and the operating system was AIX 4.3.3. Each
S M P node contains 4GB main memory for a total of 64 GB system memory. A Colony
switch--a proprietary IBM interconnect--connects the nodes. We compiled the various
tests with the IBM XI, and KAI Guide compilers using IBM's MPI library in user-space
mode. Our test jobs ran on dedicated nodes, although other jobs were concurrently using
the network.

4.3 Applications
We evaluate our proposed techniques on two scalable applications. Each application

has different computational and communication characteristics [131. SPPM, for example,
has large blocks of floating point computation with infrequent, large messages, while
SMG2000 is at the other end of the spectrum, having frequent, small messages with
smaller blocks of computation.

sPPM [I 11 solves a 3-D gas dynamics problem on a uniform Cartesian mesh, using a
simplified version of the Piecewise Parabolic Method. The algorithm makes use of a split
scheme of X, Y, and Z Lagrangian and remap steps, which are computed as three
separate sweeps through the mesh per timestep. Message passing provides updates to
ghost cells from neighboring domains three times per timestep. OpenMP provides thread-
level parallelism within MPI tasks.

Swee~3D [S, 81 is a solver for the 3-D, time-independent, particle transport equation
on an orthogonal mesh and it uses a multidimensional wavefront algorithm for "discrete
ordinates" deterministic particle transport simulation. Sweep3D benefits from multiple
wavefi-onts in multiple dimensions, which are partitioned and pipelined on a distributed
memory system. The three dimensional space is decomposed onto a twodimensional
orthogonal mesh, where each processor is assigned one columnar domain. Sweep3D
exchanges messages between processors as wavefronts propagate diagonally across this
3-D space in eight directions.

- 6 -

r 1

Figure 2: Dendrogram for a section of sPPM using raw metrics.

4.4 Clustering

4.4.1 Agglomerative Hierarchical Method
This method gives users insights about overall cluster structure that exist in a data

space by constructing dendrograms. Figure 2 shows the dendrogram for one instrumented
section of an sPPM experiment with 8 MPI tasks and 8 OpenMP threads per task. Since
sPPM exploits parallelism with message passing for inter-node communication and
OpenMP within shared memory for thread level parallelism, it is expected to have at least
two natural clusters. AHM clearly identifies in Figure 2 the existence of two classes; one
housing all 56 slave threads and the other cluster containing the 8 master threads.

Figure 3 illustrates the dendrogram of the same section of sPPM using derived
metrics. As expected, the configuration does not change much fkom Figure 2, suggesting
that the two clusters are performing similarly and any changes to code for either the
master thread or the slave thread will propagate to its peers. Statistical techniques only
with raw metrics would not immediately provide this type of perspectives.

Figure 4 shows the dendrogram for the raw metrics of a section of Sweep3d for an
experiment using 64 MPI tasks. In this case, three clusters are sufficiently different. Our
initial results show that because Sweep3d decomposes the global 3-D problem onto a 2-D
orthogonal mesh for processor assignment, the assignment creates two different
equivalence classes: one for internal processors (right), and one for comer and edge
processors (center and left). Other techniques, such as projecting clusters (and data
points) into principal component space, should be used to identify cluster configuration.

- 7 -

x

r?
0

8

f
t

f
m

f .-.

Figure 3: Dendrogram for a section of sPPM using derived metrics

Figure 4: Dendrogram for sweep section of sweep3d using raw metrics.

- 8 -

4.4.2 k-means clustering and F-ratio
While AHM gives a general idea about cluster structure, it is not entirely convenient

to compare clusters and compute the importance of an individual metrics that yield the
particular cluster configuration. Using k-means clustering and F-ratios, we ordered
metrics for the same section on sPPM by their F-ratio in Table 2. It suggests that
PAPI-MEM-SCY (Cycles Stalled Waiting for Memory Access), PAPI-SR-INS (Store
instructions executed), and PAPI-L1-TCM (L,1 total cache misses), are the three major
reasons that we have two distinct clusters.

Metrics
PAPl. M EM .SCY
PAPI.SR.INS
PAPI.Ll .TCM
PAPI.TOT.IIS
PAPl. LD . INS
PAPI.FP.INS
PAPI .TOT.CYC
PAPI .FDV.INS

F-ratio
7.91 4255
5.124050
5.097693
3.488066
3.473341
2.498332
1.673567
0.1 61 107

Table 2: Metrics ordered by F-ratio size for a section of sPPM.

4.5 Factor Analysis
Table 3 shows the result of factor analysis on the same section of sPPM. Each

column represents loadings of metrics for each factor. As it suggests, it is reasonable to
group together those metrics with bigger loadings per column.

.

Metric Factor1

PAPI.BR.PRC 0.000
PAPI.Ll .DCM 0.969

PAP1.BTAC.M 0.799

PAP1.M EM. WCY 0.957
PAPI.SR.INS 0.000

PAPLLDJNS -0.658

PAPI.FXU.IDL -0.244

PAPI.FP.INS -0.974

Factor2 Factor3
0.519 0.541
0.000 0.792
0.13 -0.161
0.883 -0.290
0.000 0.324
0.199 0.000
0.000 0.000
0.690 0.000

Table 3: Factor Analysis of sPPM (with three factors assumed).

By setting a somewhat arbitrary threshold, 0.5, we are able to make four groups:
{PAPI.Ll .DCM, PAPI.BTAC.M, PAPI.FP.INS, PAPLMEM.WCY} , {PAPI.FXU.IDL,
PAPI.SR.INS}, {PAPI.BR.PRC} and PAPI.LD.INS. We verified the metrics in the
same group are highly correlated by scanning correlation matrix. Users can now select a
representative metric per group for the further analysis.

5 Conclusions
Scalable computing platforms will generate tremendous volumes of performance

data, especially when monitoring low-level, frequent events like those produced by
microprocessor performance counters. Developers will need new techniques to help them
gain insight into this massive dataset. Traditional multivariate statistical techniques can

- 9 -

play a prominent role in this effort by reducing the dataset dimensionality and classifling
similar datapoints. Our experiments on several applications demonstrate the feasibility of
this approach and highlight several useful implementation strategies. For example, our
experiments with sPPM and Sweep3d clearly confined that clustering on both raw and
derived metrics can allow a user to understand the performance implications across all
tasks in the application. We hope to feed results from this collection of statistical analysis
techniques directly to the user, or to a sophisticated performance analysis system, such as
a visualization or an expert system.

Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy by

the University of California, Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. This paper is available as LLNL Technical Report UCRL-JC-
148058.

Appendix A: PAPI Power3 Hardware Events

- 10 -

PAPI-FMA-INS FMA instructions completed (PM-EXEC-FMA)
PAPI-TOT-IIS Instructions issued (PM-INST-DISP)
PAPI-TOT-I NS
PAPI-INT-INS Integer instructions

Instructions completed (PM-I NST-CMPL)

(PM-FXUO-PROD_RESULT,PM-FXUl-PROD-RESULT,PM-FXU2-PROD-R
ESULT)

PAPI-FP-INS Floating point instructions (PM-FPUO-CMPL,PM-FPUI-CMPL)
PAPI-LD-INS Load instructions (PM-LD-CMPL)
PAPI-SR-INS Store instructions (PM-ST-CMPL)
PAPI-BR-INS Branch instructions (PM-BR- CMPL)
IPAPI-FLOPS I Floating point instructions per second I -

I(PM CYC.PM FPUO CMPL,PM FPUI CMPL)
PAPITOT_CYC I Total cycles (PM CYC) - - . -
IPAPI-IPS I Instructions per second (PM-CYC,PM-lNST-CMPL) - - - -

PAPI-LST-INS I Loadlstore instructions completed (PM-LD-CMPL,PM-ST-CMPL)
PAPI SYC INS I Svnchronization instructions comDleted (PM SYNC) - - . - I -

lPAPl FDV INS I Floating mint divide instructions (PM FPU FDIV) I
I . - - - - - .

lPAPl-FSQ-lNS I Floating point square root instructions (PM FPU FSQRT)

References
J.M. Anderson, L.M. Berc, J. Dean, S . Ghemawat, M.R. Henzinger, S.-T.A.
Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl,
“Continuous profiling: where have all the cycles gone?,” ACM Trans. Computer
Systems, 15(4):357-90, 1997.
P. Bose and T.M. Conte, “Performance analysis and its impact on design,”
Computer, 31(5):41-9, 1998.
S . Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A Scalable Cross-
Platform Infkastructure for Application Performance Tuning Using Hardware
 counter^,^' Roc. SC2000: High Performance Networking and Computing Conf.
(electronic publication), 2000.
J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G. Chrysos, ‘TrofileMe:
hardware support for instruction-level profiling on out-of-order processors,”
Proc. Thirtieth h u a l EEE/ACM International Symposium on
Microarchitecture (MICRO), 1997, pp. 292-302.
A. Hoisie, 0. Lubeck, H. Wasserman, F. Petrini, and H. Alme, “A General
Predictive Performance Model for Wavefkont Algorithms on Clusters of SMPs,”
Proc. ICPP 2000,2000.
Intel, “Intel IA-64 Architecture Software Developer’s Manual, Volume 4:
Itanium Processor Programmer’s Guide,” Intel 2000.
R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 4 ed.
Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1998.
K.R. Koch, R.S. Baker, and R.E. Alcouffe, “Solution of the First-Order Form of
the 3-D Discrete Ordinates Equation on a Massively Parallel Processor,” Trans.
Amer. NUC. Soc., 65(198), 1992.
K. London, J. Dongarra, S . Moore, P. Mucci, K. Seymour, and T. Spencer, “End-
user Tools for Application Performance Analysis Using Hardware Counters,”
Proc. International Conference on Parallel and Distributed Computing Systems,
2001.

- 11 -

J.M. May, “MPX: Software for Multiplexing Hardware Performance Counters in
Multithreaded Programs,” Roc. International Parallel and Distributed Processing
Symposium (PDPS) (electronic publication), 2001.
A.A. Mirin, R.H. Cohen, B.C. Curtis, W.P. Dannewk, A.M. Dimits, M.A.
Duchaineau, D.E. Eliason, D.R. Schikore, S.E. Anderson, D.H. Porter, P.R.
Woodward, L.J. Shieh, and S.W. White, “Very High Resolution Simulation of
Compressible Turbulence on the IBM-SP System,” Proc. SC99: High
Performance Networking and Computing Conf. (electronic publication), 1999.
D.A. Reed, O.Y. Nickolayev, and P.C. Roth, “Real-Time Statistical Clustering
and for Event Trace Reduction,” J. Supercomputing Applications and High-
Performance Computing, 11(2):144-59,1997.
J.S. Vetter and F. Mueller, “Communication Characteristics of Large-Scale
Scientific Applications for Contemporary Cluster Architectures,” hoc.
International Parallel and Distributed Processing Symposium (IPDPS), 2002.
J.S. Vetter and D. Reed, “Managing Performance Analysis with Dynamic
Statistical Projection Pursuit,” Proc. SC99: High Performance Networking and
Computing Conf. (electronic publication), 1999.
M. Zagha, B. Larson, S . Turner, and M. Itzkowitz, “Performance Analysis Using
the MIPS RlOOOO Performance Counters,” Proc. Supercomputing (electronic
publication), 1996.

- 12 -

